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Abstract

As a continuation of previous papers, we study the concept of a Lie algebroid structure on an affine
bundle by means of the canonical immersion of the affine bundle into its bidual. We pay particular
attention to the prolongation and various lifting procedures, and to the geometrical construction of
Lagrangian-type dynamics on an affine Lie algebroid.
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1. Introduction

Since the book of Mackenzie[12], the mathematics of Lie algebroids (and groupoids) has
been studied by many authors; for a non-exhaustive list of references, see e.g.[3,5,6,9,10,
3,18]. The potential relevance of Lie algebroids for applications in physics and other fields
of applied mathematics has gradually become more evident. In particular, contributions by
Libermann[11] and Weinstein[21] have revealed the role Lie algebroids play in modelling
certain problems in mechanics. The concept of ‘Lagrangian equations’ on Lie algebroids
certainly defines an interesting generalisation of Lagrangian systems as known from classi-
cal mechanics, if only because of the more general class of differential equations it involves
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while preserving a great deal of the very rich geometrical structure of Lagrangian (and
Hamiltonian) mechanics.

One of us[16], in particular, has produced evidence of this rich structure by showing that
one can prolong a Lie algebroid in such a way that the newly obtained space has all the
features of tangent bundle geometry, which are important for the geometrical construction
of Lagrangian systems. That is to say, the prolonged Lie algebroid carries a Liouville-type
section and a vertical endomorphism which enables the definition of a Poincaré–Cartan
type 1-form, associated to a functionL; the available exterior derivative then does the rest
for arriving at an analogue of the symplectic structure from which Lagrangian equations
can be derived.

In [20], we have started an investigation on the possible generalisation of the concept of
Lie algebroids to affine bundles. Our principle motivation was to create a geometrical model
which would be a natural environment for a time-dependent version of Lagrange equations
on Lie algebroids, as discussed, e.g. in[16,21]. Since classical time-dependent mechanics is
usually described on the first-jet bundleJ 1M of a manifoldM fibred overR (see e.g.[4,14]),
andJ 1M → M is an affine bundle, it looks natural to build up a time-dependent generalisa-
tion in such a way thatJ 1M → M is the image bundle of the anchor map of a Lie algebroid
structure on some affine bundleE → M. An additional indication that such a set-up is
well suited came from a naive calculus of variations approach, which gives a clue on the
analytical format one should expect for such time-dependent Lagrange equations (see[19]).

Lie algebroids on vector bundles are known to give rise, among other things, to a linear
Poisson structure on the dual bundle, as well as a coboundary operator on its Grassmann
algebra; in fact, these properties equivalently characterise the Lie algebroid structure. One
of the features of the approach to affine algebroids adopted in[20] was our specific choice to
develop, in a direct way, a consistent theory of forms on sections of an affine bundle and their
exterior calculus. By contrast, however, in the context of briefly mentioning the related Pois-
son structure in the concluding remarks, we did announce a forthcoming different approach,
which would be based on the fact that an affine bundle can be regarded as an affine sub-bundle
of a vector bundle, namely the dual of its extended dual. This is the line of reasoning we
will develop here; it could be termed ‘indirect’ because it makes use of an imbedding into a
larger bundle, but it has some marked advantages, such as the fact that proving a number of
properties becomes much easier and that new insights come to the forefront. As a matter of
fact, one readily recognises via this approach that much (if not all) of the theory of affine Lie
algebroids can be developed without needing an extra fibration of the base manifold overR.
We will accordingly start our present analysis in this more general set-up and briefly come
back to the special case appropriate for time-dependent systems in the concluding remarks.

Note, while the very last editing of this paper was being done, we have been informed
of similar investigations on affine algebroids, which have been carried out by Grabowski
et al.[7]. The reader may find it instructive to compare the two simultaneous developments,
which are related to each other up to and including ourSection 6.

The scheme of this paper is as follows. A fairly detailed description of purely algebraic
aspects of the theory is given inSections 2–4; it involves the introduction of the concept of
a Lie algebra over an affine space and aspects of exterior calculus. A Lie algebroid structure
on a general affine bundleτ : E → M is defined inSection 5: essentially, it comes from
a classical Lie algebroid on the dualẼ of the extended dualE† of E, with the property
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that the bracket of sections in the image of the inclusioni : E → Ẽ, lies in the image of
the underlying vector bundle. Equivalent characterisations of this property can be found
in the subsequent section on the exterior differential and the associated Poisson structure.
Section 7presents a number of simple examples of affine algebroids. The important concept
of prolongation of an algebroid is discussed inSection 8: starting from a general construction
on vector algebroids, it is shown that the prolonged bundle inherits the affine structure
coming fromE when the vector algebroid is the one onẼ. For the specific case of interest,
it is further shown (seeSection 9) that there is a canonical map which gives rise to a ‘vertical
endomorphism’ on sections of the prolonged bundle. Natural constructions which are then
available are complete and vertical lifts; they play a role in the geometric definition of
Lagrangian systems on affine Lie algebroids presented inSection 10.

2. Immersion of an affine space in a vector space

Let A be an affine space modelled on a vector spaceV , and letA† = Aff (A,R) be
the extended dual ofA, i.e. the vector space of all affine maps fromA to the real line. We
consider the bidual̃A of A, in the sensẽA = (A†)∗. It is well known that in the case of a
vector spaceV , the bidualṼ = (V ∗)∗ is isomorphic toV . In the case of an affine space,
the bidual includes ‘a copy’ ofA, as it is shown in the following statement.

Proposition 1. The map i: A → Ã given byi(a)(ϕ) = ϕ(a) is an injective affine map,
whose associated vector map isi : V → Ã given byi(v)(ϕ) = ϕ(v).

Proof. If a ∈ A andv ∈ V , then for allϕ ∈ A†,

i(a + v)(ϕ) = ϕ(a + v) = ϕ(a)+ ϕ(v) = i(a)(ϕ)+ i(v),

from which it follows thati is an affine map whose associated linear map isi.
To prove thati is injective, it suffices to prove thati is injective, which is obvious since

if v is an element in the kernel ofi then i(v)(ϕ) = ϕ(v) = 0 for all ϕ ∈ V ∗, hence
v = 0. �

The vector spacẽA is foliated by hyperplanes parallel to the image ofi. Every vector
z ∈ Ã is either of the formz = i(v) for somev ∈ V or of the formz = λi(a) for some
λ ∈ R\{0} anda ∈ A. Moreover,λ, a andv are uniquely determined byz. The image of the
mapi consists of the points for whichλ = 1. To understand this description in more detail,

we will prove that we have an exact sequence of vector spaces 0→ V
i→Ã → R → 0. To

this end we consider the dual sequence.

Proposition 2. Let l : R → A† be the map that associates toλ ∈ R the constant function
λ on A. Let k : A† → V ∗ be the map that associates to every affine function on A the
corresponding linear function on V. Then, the sequence of vector spaces

0 → R
l→A† k→V ∗ → 0

is exact.
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Proof. Indeed, it is clear thatl is injective,k is surjective andk ◦ l = 0, so that Im(l) ⊂
Ker(k). If ϕ ∈ A† is in the kernel ofk, i.e. the linear part ofϕ vanishes, then for every pair
of pointsa andb = a + v we have that

ϕ(b) = ϕ(a + v) = ϕ(a)+ ϕ(v) = ϕ(a),

i.e.ϕ is constant, and hence in the image ofl. �

The dual map ofk is i, since forv ∈ V we have

〈k(ϕ), v〉 = 〈ϕ, v〉 = 〈ϕ, i(v)〉.
The dual mapj of the mapl is given byj (αi(a) + iv) = α. Indeed, for everyλ ∈ R we
have

j (z)λ = 〈z, l(λ)〉 = 〈αi(a)+ i(v), l(λ)〉 = α〈i(a), l(λ)〉 + 〈i(v), l(λ)〉 = αλ.

We have the following corollary.

Corollary 1. If A is finite dimensional, then the sequence

0 → V
i→ Ã

j→ R → 0

is exact.

Note that in this way we can clearly identify the image ofV as the hyperplane of̃A with
equationj (z) = 0, and the image ofA as the hyperplane of̃A with equationj (z) = 1, in
other words

i(V ) = j−1(0) and i(A) = j−1(1).

Note in passing that if we have an exact sequence 0→ V
α→W

j→ R → 0, then we can
defineA = j−1(1); it follows thatA is an affine space modelled on the vector spaceV

andW is canonically isomorphic tõA. The isomorphism is the dual map ofΨ : W ∗ →
A†, Ψ (φ)(a) = φ(i(a)), wherei : A → W is the canonical inclusion.

We now discuss the construction of a basis forA†. Let (O, {ei}) be an affine frame
onA. Thus every pointa has a representationa = O + viei . The family of affine maps
{e0, e1, . . . , en} given by

e0(a) = 1, ei(a) = vi

is a basis forA†. If ϕ ∈ A†, and we putϕ0 = ϕ(O) andϕi = ϕ(ei ), thenϕ = ϕ0e
0 +ϕiei .

It is to be noticed that, contrary toe1, . . . , en, the mape0 does not depend on the frame
we have chosen forA. In fact,e0 coincides with the mapj .

Let now{e0, e1, . . . , en} denote the basis of̃A dual to{e0, e1, . . . , en}. Then the image
of the canonical immersion is given by

i(O) = e0, i(ei ) = ei
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from which it follows that fora = O + viei , we havei(a) = e0 + viei . If we denote by
(x0, x1, . . . , xn) the coordinate system oñA associated to the basis{e0, . . . , en}, then the
equation of the image of the mapi isx0 = 1, while the equation of the image ofi isx0 = 0.
Coordinates inÃ∗ = A† associated to the basis above will be denoted by(µ0, µ1, . . . , µn),
i.e.µα(ϕ) = 〈eα, ϕ〉 for everyϕ ∈ A†.

3. Lie algebra structure over an affine space

Implicit in our previous paper[20] is the following definition of a Lie algebra over an
affine space.

Definition 1. LetA be an affine space over a vector spaceV . A Lie algebra structure onA
is given by:

• a Lie algebra structure [, ] on V ,
• an action by derivations ofA onV , i.e. a mapD : A× V → V , (a, v) �→ Dav with the

properties

Da(λv) = λDav, Da(v + w) = Dav +Daw,

Da [v,w] = [Dav,w] + [v,Daw],

• satisfying the compatibility property

Da+vw = Daw + [v,w].

Incidentally, it is sufficient to require in the first item that the bracket onV is R-bilinear
and skew-symmetric, since the Jacobi identity then follows from the requirements onDa .

If we use a bracket notation [a, v] ≡ Dav, then the conditions in the definition above
read as follows:

[a, λv] = λ[a, v], [a, v + w] = [a, v] + [a,w],

[a, [v,w]] = [[a, v],w] + [v, [a,w]] , [a + v,w] = [a,w] + [v,w].

This allows us to define a bracket of elements ofA by putting

[v, a] = −[a, v]

and, ifb = a + v, then

[a, b] = [a, v].

This bracket is skew-symmetric by construction and also satisfies a Jacobi-type property.

Theorem 1. A Lie algebra structure over an affine space A is equivalent to a Lie algebra
extension of the trivial Lie algebraR by V. Explicitly, it is equivalent to the exact sequence

of vector spaces0 → V
i→ Ã

j→ R → 0 being an exact sequence of Lie algebras.
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Proof. If the exact sequence is one of Lie algebras, we of course have a Lie algebra structure
onV and the mapD determined byDav = [i(a), i(v)] satisfies all requirements to define
a Lie algebra structure onA.

Conversely, assume we have a Lie algebra structure on the affine spaceA. If we fix an
elementa ∈ A, then every elementz ∈ Ã can be written in the formz = λi(a) + i(v).
We can define a bracket of two elementsz1 = λ1i(a) + i(v1) andz2 = λ2i(a) + i(v2)

by

[z1, z2] = i([v1, v2] + λ1Dav2 − λ2Dav1).

This bracket is clearly bilinear and skew-symmetric, and a straightforward calculation shows
that it satisfies the Jacobi identity. Moreover, the definition does not depend on the choice
of the pointa; if a′ is another point inA, thena′ = a + w for somew ∈ V and the
compatibility condition implies that the result is independent of that choice. Finally, it is
obvious that the mapsi andj are Lie algebra homomorphisms. �

Notice that the only condition for a Lie algebra structure onÃ to be an extension ofR
by V is that the bracket takes values inV , symbolically: [Ã, Ã] ⊂ V .

Once we have chosen an affine frame onA, we have that the bracket oñA is determined
by the brackets of the associated basis elements. These must be of the form

[e0, e0] = 0, [e0, ej ] = Ck0j ek, [ei, ej ] = Ckij ek,

since all brackets must take values in the image of the mapi.
It is well known that a Lie algebra structure on a vector space defines, and is defined

by a linear Poisson structure on the dual vector space. In the light of the results of the
previous section we have a Poisson bracket onV ∗ and one onA†. Furthermore,Ã being
an extension ofR by V , we have that the Poisson structureΛ

A† is an extension byΛV ∗

of ΛR = 0 (see[2] for the details on Poisson extensions and their relations to Lie algebra
extensions). Therefore, once we have fixed a pointa ∈ A, we have a splitting of the sequence

0 → V
i→ Ã

j→ R → 0 given byh(λ) = λi(a), and the Poisson tensor can be written as
Λ
A† = ΛV ∗ +Xa ∧XDa , whereXDa is the linear vector field associated to the linear map

Da ∈ End(V ), andXa is the constant vector corresponding toi(a). Moreover, we have that
LXDaΛV ∗ = 0.

In the coordinatesµ0, µ1, . . . , µn onA† associated to the basis{eα}, we have

{µ0, µ0} = 0, {µ0, µj } = µk C
k
0j , {µi, µj } = µk C

k
ij ,

whereCk0j , C
k
ij are the structure constants introduced above. Therefore, the Poisson tensor

reads

Λ
†
A = 1

2
µkC

k
ij
∂

∂µi
∧ ∂

∂µj
+ µkC

k
0j

∂

∂µ0
∧ ∂

∂µj
,

where the first term isΛV and the second one isXa ∧XDa with a = O, the origin.
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4. Exterior algebra over an affine space

In [20] we have defined the concept of differential forms on sections of an affine bundle.
We aim in this section to establish at the algebraic level, the relation with ordinary forms on
the vector extension. We will re-state in the algebraic setting the definition of ak-form,k ≥ 1.

Definition 2. A k-form on an affine spaceA is a mapω : A×· · ·×A → R for which there
exists ak-form ω on the associated vector spaceV , and a mapω0 : A×V × · · · ×V → R

with the following properties:

1. ω0 is skew-symmetric and linear in itsk − 1 vector arguments.
2. For everya ∈ A and for everyv1, v2, . . . , vk ∈ V , we have

ω0(a + v1, v2, . . . , vk) = ω0(a, v2, . . . , vk)+ ω(v1, v2, . . . , vk).

3. For everya1, . . . , ak ∈ A, if we choose an arbitrarya0 ∈ Aand putai = a0+vi , we have

ω(a1, . . . , ak) =
k∑
j=1

(−1)j+1ω0(a0, v1, . . . , v̂j , . . . , vk)+ ω(v1, v2, . . . , vk).

We next show that ak-form onA is just the pull-back by the canonical immersion of a
k-form onÃ, in other words,ω is ak-form if we have

ω(a1, . . . , ak) = ω̃(i(a1), . . . , i(ak))

for some ordinary exteriork-form ω̃ on the vector spacẽA.

Proposition 3. If ω̃ is a k-form onÃ thenω = i∗ω̃ is a k-form on the affine space A.
Conversely, given a k-form on the affine space A, there exists a unique k-form̃ω on Ã, such
thatω = i∗ω̃.

Proof. For a givenk-form ω̃ on Ã we define the maps

ω(a1, . . . , ak) = ω̃(i(a1), . . . , i(ak)),

ω0(a, v2, . . . , vk) = ω̃(i(a), i(v2), . . . , i(vk)),

ω(v1, . . . , vk) = ω̃(i(v1), . . . , i(vk)).

Then, conditions 1 and 2 in the definition above are trivially satisfied. Moreover, if we fix
a0 ∈ A and writeai = a0 + vi , then by skew-symmetry of̃ω we have

ω(a1, . . . , ak)= ω̃(i(a1), . . . , i(ak)) = ω̃(i(a0)+ i(v1), . . . , i(a0)+ i(vk))

=
k∑
j=1

(−1)j+1ω̃(i(a0), i(v1), . . . , î(vj ), . . . , i(vk))

+ ω̃(i(v1), . . . , i(vk))

=
k∑
j=1

(−1)j+1ω0(a0, v1, . . . , v̂j , . . . , vk)+ ω(v1, . . . , vk),

which proves condition 3.
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Conversely, assume we are given ak-form ω on the affine spaceA with its associated
ω0 andω. Fixing a0 ∈ A, we know that every pointz ∈ Ã can be written in the form
z = λi(a0)+ i(v) for λ ∈ R andv ∈ V . We define the map̃ω by

ω̃(z1, . . . , zk)= ω̃(λ1i(a0)+ i(v1), . . . , λki(a0)+ i(vk))

=
k∑
j=1

(−1)j+1λjω0(a0, v1, . . . , v̂j , . . . , vk)+ ω(v1, . . . , vk).

By virtue of conditions 1 and 3, it follows thatω̃ is multi-linear and skew-symmetric, i.e. it is
ak-form onÃ. Moreover,ω̃(z1, . . . , zk) is independent of the choice of the pointa0. Indeed,
if we choose a different pointa′

0 = a0 + w, thenzj = λj i(a
′
0)+ v′

j with v′
j = vj − λjw,

and applying the definition above we get

ω̃(z1, . . . , zk)= ω̃(λ1i(a
′
0)+ i(v′

1), . . . , λki(a
′
0)+ i(v′

k))

=
k∑
j=1

(−1)j+1λjω0(a
′
0, v

′
1, . . . , v̂

′
j , . . . , v

′
k)+ ω(v′

1, . . . , v
′
k)

=
k∑
j=1

(−1)j+1λjω0(a0 + w, v1 − λ1w, . . . , v̂j , . . . , vk − λkw)

+ω(v1 − λ1w, . . . , vk − λkw)

=
k∑
j=1

(−1)j+1λjω0(a0, v1, . . . , v̂j , . . . , vk)+ ω(v1, . . . , vk),

where we have used the properties ofω0 andω.
The formω̃ is unique, since, if̃θ is ak-form onÃ such thati∗θ̃ = 0, then it follows that

the associatedθ0 andθ vanish from where we deduce thatθ̃ = 0. �

Once a reference frame has been fixed onA, a 1-form ω̃ on Ã is of the form ω̃ =
ω0e

0 + ωie
i , and then the local representation ofω = i∗ω̃ looks exactly the same.

More generally, ap-form ω̃ on Ã is of the form

ω̃ = 1

p!

n∑
µ1,...,µp=0

ωµ1,...,µpe
µ1 ∧ · · · ∧ eµp

and thus

ω = 1

(p − 1)!
ω0i1···ip−1e

0 ∧ ei1 ∧ · · · ∧ eip−1 + 1

p!
ωi1···ip e

i1 ∧ · · · ∧ eip ,

where the first term corresponds to the sum of terms involvingω0 and the second toω.
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5. Lie algebroid structures over affine bundles

Let τ : E → M be an affine bundle with associated vector bundleτ : V → M. We
consider the bundleτ† : E† → M whose fibre overm ∈ M is the extended dualE†

m of the

fibreEm. We also consider the dual bundleτ̃ : Ẽ → M, whose fibre atm is Ẽm = (E
†
m)

∗.
At every pointm we have the exact sequence of vector spaces

0 → Vm
im→ Ẽm

jm→ R → 0

and therefore an exact sequence of vector bundles overM

0 → V
i→ Ẽ

j→M × R → 0.

On the other hand, there is the canonical immersioni : E → Ẽ, so thati(Em) =
j−1((m,1)).

By taking sections, we have the exact sequence of real vector spaces (andC∞(M)-
modules)

0 → Sec(V )
i→ Sec(Ẽ)

j→C∞(M) → 0

and an inclusioni : Sec(E) → Sec(Ẽ), whereby we make no notational distinction between
the bundle maps and the induced maps of sections (i.e. ifσ is a section andr is a bundle
map over the identity, we writer(σ ) instead ofr ◦ σ ). It follows that if we fix a sectionσ
of E then we have a splitting of the above sequence and any sectionζ of Ẽ can be written
asζ = fi(σ )+ i(η), for some sectionη of V and wheref = j (ζ ).

Also, sinceV is the vector bundle associated to the affine bundleE, we have that Sec(V )
is the (real) vector space associated to the affine space Sec(E).

In [20] we defined the concept of Lie algebroid structure on the class of affine bundles
whose base manifold is further fibred overR. Here we start with a more general definition,
which in the light of the previous section can be expressed as follows.

Definition 3. A Lie algebroid structure onE consists of a Lie algebra structure on the
(real) affine space of sections ofE together with an affine mapρ : E → TM (the anchor),
satisfying the following compatibility condition

Dσ (f ζ ) = ρ(σ)(f )ζ + fDσ ζ

for everyσ ∈ Sec(E), ζ ∈ Sec(V ) andf ∈ C∞(M), and whereDσ is the actionσ �→ Dσ
of Sec(E) on Sec(V ).

The compatibility condition ensures that the associationσ �→ Dσ , which acts by deriva-
tions on the real Lie algebra Sec(V ), also acts by derivations on theC∞(M)-module Sec(V ).

The anchor mapρ extends to a linear map̃ρ : Ẽ → TM, which we will describe in more
detail below. It is of interest, however, to observe now already that the mapi : V → Ẽ is a
morphism of Lie algebroids, since we have

[i(η1), i(η2)] = i([η1, η2]) and ρ̃ ◦ i = ρ,
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whereρ is the linear part ofρ. On the contrary, the mapj : Ẽ → M × R is not a
morphism of Lie algebroids, since we have thatj ([ζ1, ζ2]) = ρ̃(ζ1)f2 − ρ̃(ζ2)f1, while
[j (ζ1), j (ζ2)] = 0 since the fibres ofM × R are one-dimensional.

The affine Lie algebroid structure we studied in[20] is the case thatM is further fibred over
the real lineπ : M → R and the anchor mapρ takes values inJ 1M. Notice that such an extra
fibration is not generally available, not even locally. For instance, if we take any affine bundle
τ : E → M with the trivial Lie algebroid structure (null bracket and anchor) then there is no
fibration overR such that the image ofρ is inJ 1M, since the vectors ini(J 1M)are non-zero.

The following result shows that one can alternatively define an affine Lie algebroid
structure onE as a vector Lie algebroid structure([ , ], ρ̃) on Ẽ such that the bracket of
two sections in the image ofi belongs to the image ofi.

Theorem 2. A Lie algebroid structure on the vector bundleτ̃ : Ẽ → M which is such
that the bracket of sections in the image of i lies in the image ofi defines a Lie algebroid
structure on the affine bundleτ : E → M, whereby the brackets and maps are determined
by the following relations:

i([η1, η2]) = [i(η1), i(η2)], i(Dση) = [i(σ ), i(η)], ρ(σ ) = ρ̃(i(σ )).

Conversely, a Lie algebroid structure on the affine bundleτ : E → M extends to a Lie
algebroid structure on the vector bundleτ̃ : Ẽ → M such that the bracket of sections in the
image of i is in the image ofi. If we fix a sectionσ of E and write sectionsζ of Ẽ (locally)
in the formζ = fi(σ )+ i(η) then the anchor and the bracket are given by

ρ̃(ζ ) = fρ(σ)+ ρ(η),

[ζ1, ζ2] = (ρ̃(ζ1)(f2)− ρ̃(ζ2)(f1))i(σ )+ i([η1, η2] + f1Dση2 − f2Dση1).

Proof. The verification of the above statements is straightforward but rather lengthy. We
limit ourselves to checking that the compatibility conditions between brackets and anchors
are satisfied. For the first part, we find

i(Dσ (f η))= [i(σ ), i(f η)] = [i(σ ), f i(η)] = ρ̃(i(σ ))(f )i(η)+ f [i(σ ), i(η)]

= i(ρ(σ )(f )η + fDσ (η)),

from which it follows thatDσ (f η) = ρ(σ)(f )η + fDσ (η).
For the converse, observe that

[ζ1, f ζ2]−f [ζ1, ζ2] = f2ρ̃(ζ1)(f )i(σ )+ i(f1ρ(σ)(f )η2 + ρ(η1)(f )η2)

= ρ̃(ζ1)(f )f2i(σ )+ (f1ρ(σ)+ ρ(η1))(f )i(η2) = ρ̃(ζ1)(f )ζ2,

which is the required compatibility condition. �

In coordinates, ifxi denote coordinates onM andyα fibre coordinates onE with respect
to some local frame(e0, {eα}) of sections ofE, then we have

ρ(e0 + yαeα) = (ρi0 + ρiαy
α)

∂

∂xi
, [eα, eβ ] = C

γ
αβeγ , De0eβ = C

γ

0βeγ

for some functionsρi0, ρiα, Cγ0β andCγαβ onM.
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Taking the local basis of sections ofẼ, associated to the above frame, it follows that

ρ̃(y0e0 + yαeα) = (ρi0y
0 + ρiαy

α)
∂

∂xi

and the bracket is determined by

[e0, e0] = 0, [e0, eβ ] = C
γ

0βeγ , [eα, eβ ] = C
γ
αβeγ .

As a final remark we mention that the orbits of the Lie algebroidτ : V → M are subsets
of the orbits of the algebroid̃τ : Ẽ → M and they are equal if and only if there exists a
sectionσ of E such thatρ(σ) is in the image ofρ.

6. Exterior differential and Poisson structure

Now that we have proved that a Lie algebroid structure on an affine bundle is equivalent
to a Lie algebroid structure oñE, we can define the exterior differential operator onE by
pulling back the exterior differential oñE. More precisely, given ak-form ω on the affine
bundleE we know that there exists a uniqueω̃ on Ẽ such thatω = i∗(ω̃). Then we define
dω as the(k + 1)-form given by

dω = i∗(dω̃).

It is easy to see that this definition is equivalent to the one given in[20] (at least whenM
is fibred overR).

The definition given here has some clear advantages. For instance, the propertyd2 = 0
which was rather difficult to prove in[20], becomes evident now

d2ω = d(d(i∗ω̃)) = d(i∗dω̃) = i∗(d2ω̃) = 0.

The differentiald on the Lie algebroidV is also related to the differential oñE; for every
k-form ω̃ onE we have that

di∗ω̃ = i∗(dω̃),

which in fact simply expresses thati is a morphism of Lie algebroids. Hence, one can find
the differential of a formω on V by choosing ak-form ω̃ on Ẽ such thati∗ω̃ = ω and
then obtaindω asi∗(dω̃). That this does not depend on the choice of howω̃ is expressed
in equivalent terms by the following result.

Proposition 4. The idealI = {ω̃|i∗ω̃ = 0} is a differential ideal, i.e.dI ⊂ I.

Proof. If i∗ω̃ = 0, then the same is true fordω̃ sincei∗(dω̃) = di∗(ω̃) = 0. �

The idealI is generated by the 1-forme0, I = {e0 ∧ θ |θ is a form onẼ} so thatde0

belongs toI. The following result shows thate0 in fact isd-closed and that this property
characterises affine structures.
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Theorem 3. A Lie algebroid structure oñE restricts to a Lie algebroid structure on the
affine bundle E if and only if the exterior differential satisfies de0 = 0.

Proof. Indeed, taking two sectionsσ1 andσ2 of E we have

de0(i(σ1), i(σ2))= ρ̃(σ1)〈e0, i(σ2)〉 − ρ̃(σ2)〈e0, i(σ1)〉 − 〈e0, [i(σ1), i(σ2)]〉
= −〈e0, [i(σ1), i(σ2)]〉.

It follows that [i(σ1), i(σ2)] is in Im(i) = Ker(e0) if and only if de0 vanishes on the image
of i, which spansẼ. �

In coordinates, the exterior differential operator is determined by

df = ρi0
∂f

∂xi
e0 + ρiα

∂f

∂xi
eα for f ∈ C∞(M)

and

de0 = 0, deγ = −Cγ0β e0 ∧ eβ − 1
2C

γ
αβe

α ∧ eβ.

In the special case thatρ(E) ⊂ J 1M (M fibred overR), we have that dt = e0 so thate0 is
not only closed but also exact. In fact, this is the condition for a Lie algebroid structure on an
affine bundle to have a 1-jet-valued anchor. Indeed, if there exists anf ∈ C∞(M) such that
df = e0, then the partial derivatives off cannot simultaneously vanish, hencef defines a
local fibration and then for any sectionσ ofE we have thatρ(σ)f = 〈df, σ 〉 = 〈e0, σ 〉 = 1,
which is the condition for the anchor being 1-jet-valued.

When we have a Lie algebroid structure onẼ, there is a Poisson bracket on the dual
bundleẼ∗ = E†. Any sectionζ of Ẽ, and in particular any section ofE, determines a
linear functionζ̂ onE† by

ζ̂ (ϕ) = 〈ζm, ϕ〉 for everyϕ ∈ E†
m.

Then the Poisson bracket is determined by the condition

{ζ̂1, ζ̂2} = ̂[ζ1, ζ2],

which for consistency (using linearity and the Leibnitz rule) requires that we put

{ζ̂ , g} = ρ̃(ζ )(g) and {f, g} = 0,

for f andg functions onM.
It is of some interest to mention yet another characterisation of the result described

in Theorem 2. The above Poisson bracket in fact is determined by the bracket of linear
functions coming from sections ofE, since these span the set of all linear functions onE†.
But the bracket of sections ofE is a section ofV ; it follows that the corresponding Poisson
brackets are independent of the coordinateµ0, and therefore,∂/(∂µ0) is a symmetry of the
Poisson tensor. Conversely, it is obvious that the latter symmetry property will imply that
the bracket of sections in the image ofi belongs to the image ofi.
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It should be noticed that, in general, the Poisson structure we have defined is not an
extension of a Poisson structure onM×R by the one onV ∗. Indeed, the mapk : E† → V ∗
is a Poisson map (since it is the dual ofi and this is a Lie algebroid morphism), but the
map l : M × R → E† is not a Poisson map, except ifρ = 0. This is equivalent to the
dual mappingl∗ = j not being a Lie algebroid morphism. To prove this, we first show
that the brackets{η̂, f } ◦ l and {η̂ ◦ l, f ◦ l} are different, except whenρ = 0. Indeed,
we have thatl(m, p) = pe0, so thatη̂ ◦ l = 0 and hence{η̂ ◦ l, f ◦ l} = 0. On the other
hand,{η̂, f } ◦ l = ρ(η)(f ) ◦ l = ρ(η)(f ), sinceρ(η)(f ) is a function onM. Therefore,
the two brackets are equal if and only ifρ = 0. Similarly, one can calculate the brackets
{ê0, f } ◦ l = {µ0, f } and{ê0 ◦ l, f ◦ l} = ρ(e0)(f ). This imposes that the Poisson tensor
onM × R has to beΛ = (∂/(∂µ0))∧X0 withX0 = ρ(e0). (Notice thatρ(e0) = ρ(σ) for
any sectionσ of E.) The other brackets vanish, so there are no further conditions.

In coordinates, we have

{xi, xj } = 0, {µ0, x
i} = ρi0, {µα, xi} = ρiα,

{µ0, µβ} = C
γ

0βµγ , {µα,µβ} = C
γ
αβµγ

and therefore the Poisson tensor is

Λ
E† = ρiα

∂

∂µα
∧ ∂

∂xi
+ 1

2
µγC

γ
αβ

∂

∂µα
∧ ∂

∂µβ
+ ∂

∂µ0
∧
(
ρi0

∂

∂xi
+ µγC

γ

0β
∂

∂µβ

)
.

7. Examples

7.1. The canonical affine Lie algebroid

The canonical example of a Lie algebroid over an affine bundle is the first-jet bundle
J 1M → M to a manifoldM fibred over the real lineπ : M → R. The elements of the
manifoldJ 1M are equivalence classesj1

t γ of sectionsγ of the bundleπ : M → R, where
two sections are equivalent if they have first-order contact at the pointt . It is an affine bundle
whose associated vector bundle is Ver(π) the set of vectors tangent toM which are vertical

overR. In this case it is well-known thatJ 1M† = T ∗M, and thereforẽJ 1M = TM. The
canonical immersion is given by

i(j1
t γ ) = γ̇ (t),

i.e. it maps the 1-jet of the sectionγ at the pointt to the vector tangent toγ at the pointt .
In coordinates, ifj1

t γ has coordinates(t, x, v) then

i(t, x, v) = ∂

∂t

∣∣∣∣
(t,x)

+ vi
∂

∂xi

∣∣∣∣
(t,x)

.

An elementw of the associated vector bundle Ver(π) is of the form

w = wi
∂

∂xi

∣∣∣∣
(t,x)

.
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The bracket of sections ofJ 1M is defined precisely by means of the above identification
of 1-jets with vectorsv ∈ TM which projects to the vector∂/∂t . In coordinates a sectionX
of J 1M is identified with the vector field

X = ∂

∂t
+Xi(t, x)

∂

∂xi
,

and the bracket is

[X, Y ] = {X(Y i)− Y (Xi)} ∂
∂xi

which is obviously a section of the vector bundle.

7.2. Affine distributions

An affineE sub-bundle ofJ 1M is involutive if the bracket of sections of the sub-bundle
is a section of the associated vector bundle. Therefore, taking as anchor the natural inclusion
into TM and as bracket the restriction of the bracket inJ 1M to E we have an affine Lie
algebroid structure onE.

7.3. Lie algebra structures on affine spaces

We consider the case in which the manifoldM reduces to one pointM = {m}. Thus
our affine bundle isE = {m} × A and the associated vector bundle isW ≡ {m} × V for
some affine spaceA over the vector spaceV . Then, a Lie algebroid structure over the affine
bundleE is just an affine Lie algebra structure overA. Indeed, every section ofE andW is
determined by a point inA andV , respectively. The anchor must vanishes sinceTM = {0m},
so it does not carry any additional information.

7.4. Trivial affine algebroids

By a trivial affine space we mean just a pointA = {O}, and the associated vector space
is the trivial oneV = {0}. The extended affine dual ofA is A† = R since the only affine
maps defined on a space of just a point are the constant maps. It follows that the extended
bidual isÃ = R.

Given a manifoldM, we consider the affine bundleE = M×{O} with associated vector
bundleV = M × {0}. OnV we consider the trivial bracket [, ] = 0 and the anchorρ = 0,
and as derivationDO we also takeDO = 0. Now, to construct a Lie algebroid structure on
E, we take an arbitrary vector fieldX0 onM as given and define the mapρ : E → TM by
ρ(m,O) = X0(m). Then it follows thatρ is compatible withDO .

The extended dual ofE is E† = M × R and the extended bidual is̃E = M × R. We
therefore have one sectione0 spanning the set of sections ofE†, and the dual elemente0
(which is just the image under the canonical immersion of the constant section of value 0).

We want to study the associated exterior differential operator and Poisson bracket. For
the exterior differential operator, since we have one-dimensional fibre onE† it follows that
de0 = 0. On functionsf ∈ C∞(M) we havedf = ρ(e0)(f )e

0 = X0(f )e
0.
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For the Poisson structure, since the fibre ofE† is one-dimensional, it is determined by
the equation{ê0, f } = ρ(e0)(f ) andê0 = µ0. We have that the only non-trivial brackets
are{µ0, f } = X0(f ). Therefore, the Poisson tensor is

Λ = ∂

∂µ0
∧X0.

7.5. Quotient by a group

If p : Q → M is a principalG-bundle andM is fibred overR, thenE = J 1Q/G → M

is an affine Lie algebroid. The anchor isρ([j1
t γ ]) = j1

t (p ◦ γ ). The bracket is obtained by
projecting the bracket onJ 1Q. We have thatẼ is the Atiyah algebroid= TQ/G, see for
instance[1].

7.6. Affine actions of Lie algebras

Let A be an affine space endowed with a Lie algebra structure. By an action ofA on a
manifoldM we mean an affine mapφ : A → X(M), such that [φ(a), φ(b)] = φ([a, b]).
ThenM×A → M has an affine Lie algebroid structure. The anchor isρ(m, ξ) = φ(ξ)(m)

and the bracket can be defined in terms of constant sections: the bracket of two constant
sectionsσi(m) = (m, ξi) is the constant section corresponding to the bracket of the values

[σ1, σ2](m) = (m, [ξ1, ξ2]A).

If we consider the Lie algebrãA thenÃ acts also on the manifoldM. The extensionẼ is
the Lie algebroid associated to the action ofÃ.

7.7. Poisson manifolds with symmetry

Consider a Poisson manifold(M,Λ) and an infinitesimal symmetryY ∈ XM of Λ, i.e.
LYΛ = 0. TakeE to beT ∗M with its natural affine structure, where the associated vector
bundle isV = T ∗M itself. OnV we consider the Lie algebroid structure defined by the
canonical Poisson structure. For a sectionα of E (i.e. a 1-form onM) we define the map
Dα : Sec(V ) → Sec(V ) by

Dαβ = LY β + [α, β].

SinceY is a symmetry ofΛ,Dα is a derivation and clearly satisfies the required compatibility
condition. If we further consider the affine anchorρ : E → TM, determined byρ(αm) =
Λ(αm) + Ym, then we have a Lie algebroid structure on the affine bundleE. In this case,
since there is a distinguished section ofE (the zero section), we have thatE† = TM × R

andẼ = T ∗M × R.

7.8. Jets of sections in a groupoid

LetG be a Lie groupoid over a manifoldM with sourceα and targetβ (the notation is as
in [1]). Let T α

G(0)
G = kerT α|G(0) be the associated Lie algebroid, i.e. the set ofα-vertical
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vectors at points inG(0) (the set of identities). The anchor is the mapρ = Tβ. Assume that
M is further fibred over the real line,π : M → R and consider the bundleE = Jα

G(0)
G

of 1-jets of sections ofπ ◦ β which areα-vertical, at points inG(0). This is an affine
bundle whose associated vector bundle is(T α

G(0)
G)ver the set of(π ◦ β)-vertical vectors

on T α
G(0)

G. If i is the natural inclusion of(T α
G(0)

G)ver into T α
G(0)

G and we define the map
j : T α

G(0)
G → M × R by j (v) = (α(τG(v)), t (v)) (wheret = π ◦ β ◦ τG), then we have

the exact sequence of vector bundles overM

0 → (T α
G(0)

G)ver i→ T α
G(0)

G
j→M × R → 0

andj−1(M × {1}) = Jα
G(0)

G. Moreover, the bracket of two sections ofJα
G(0)

G is vertical
overR from which it follows that the Lie algebroid structure ofT α

G(0)
G restricts to a Lie

algebroid structure on the affine bundleJα
G(0)

G.

8. Prolongation

In this section we define the prolongation of a fibre bundle with respect to a (vector) Lie
algebroid. We are primarily interested in the prolongation of the bundleE → M, but we
will describe explicitly a more general construction first, since this does not introduce extra
complications (see also[8] for generalities).

Let µ : P → M be a fibre bundle over the manifoldM andF → M a Lie algebroid
with anchorρ. Using notations introduced in[16], we consider the bundleµ1 : LFP → P

constructed as follows. The manifoldLFP is the total space ofρ∗(TP), the pull-back of
TP by ρ, i.e.

LFP = {(z, V ) ∈ F × TP|ρ(z) = T µ(V )}.
The bundle projection we consider, however, is not the usual one

µ2 : LFP → F, µ2(z, V ) = z,

but ratherµ1 : LFP → P , defined by

µ1(z, V ) = τP(V ),

whereτP is the tangent bundle projectionTP → P .
A sectionX of LFP is of the formX(p) = (θ(p), V (p)), whereθ is a section ofF

alongµ andV is a vector field onP . A sectionX is projectable if there exists a sectionσ
of F such thatµ2 ◦ X = σ ◦ µ. It follows thatX is projectable if and only ifθ = σ ◦ µ,
and thereforeX is of the formX(p) = (σ (m),A(p)) with m = µ(p).

The prolongation ofP inherits a Lie algebroid structure from the one onF and the one
onTP. The anchor is the map

ρ1 : LFP → TP, ρ1(z, V ) = V

and the bracket can be defined in terms of projectable sections as follows. IfX1,X2 are two
projectable sections given byXk(p) = (σk(m), Vk(p)), k = 1,2, then the bracket [X1, X2]
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is the section given by

[X1, X2](p) = ([σ1, σ2](m), [V1, V2](p)).

From this expression it is clear that [X1, X2] is also a projectable section.
An elementX of LFP is said to be vertical ifµ2(X) = 0. Therefore, it is of the

form (0, V ), for some vertical vectorV onP . One should realise, however, that there are
sectionsX of LFP for which ρ1(X) is a vertical vector onP , butX itself is not vertical.
Such elements are of the form(z, V ) with z in the kernel ofρ.

Given a local basis{ea} of sections ofF and local coordinates(xi, uI ) on P we can
define a basis of sections ofLFP as follows:

Xa(p) =
(
ea(m), ρ

i
a

∂

∂xi

∣∣∣∣
p

)
, VI (p) =

(
0m,

∂

∂uI

)
,

wherem = µ(p). Thus, any elementZ of LFP atp

Z =
(
zaea(m), (ρ

i
az
a)

∂

∂xi

∣∣∣∣
p

+ vI
∂

∂uI

∣∣∣∣
p

)
,

can be represented as

Z = zaXa + vIVI

and(xi, uI , za, vI ) are coordinates onLFP . The brackets of the elements of this basis are

[Xa,Xb] = CcabXc, [Xa,VJ ] = 0, [VI ,VJ ] = 0,

and the exterior differential is determined by

dxi = ρiaX
a, duI = VI

and

dXc = −1
2C

c
abX

a ∧ Xb, dVI = 0,

where{Xc,VI } denotes a dual basis.
As a first step towards the situation we are most interested in, we consider the case where

the Lie algebroidF is eitherV or Ẽ. We will show that the Lie algebroid structure onLẼP
then is precisely of the kind we are studying in this paper.

Proposition 5. LetI : LV P → LẼP andJ : LẼP → P × R be the maps

I (v,W) = (i(v),W) and J (z, V ) = (µ1(z, V ), jm(z)).

Then the following sequence of vector bundles is exact

0 → LV P
I→LẼP J→P × R → 0.
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Proof. We clearly have thatJ ◦ I = 0, so that Im(I ) ⊂ Ker(J ). Moreover, if(z, V ) ∈
Ker(J ) thenj (z) = 0; hence there exists av such thatz = i(v), so that(z, V ) = (i(v), V ) =
I (v, V ) is in Im(I ). �

Therefore, the set of pointsJEP = J−1(P × {1}) is an affine bundle whose associated
vector bundle isLV P . Explicitly, we have

JEP = {(i(a), V ) ∈ LẼP } � {(a, V ) ∈ E × TP|ρ(a) = T µ(V )}.
Moreover, the Lie algebroid structure ofLẼP restricts toJEP , defining therefore a Lie
algebroid structure on that affine bundle. To see this, we have to prove that the bracket of
sections ofJEP is a section ofLV P . For that it is enough to consider projectable sections,
since they form a generating set. IfZ1, Z2 are sections ofJEP , projecting to sectionsσ1
andσ2 of E, then for everyp ∈ P we have

[Z1, Z2](p) = ([σ1, σ2](m), [V1, V2](p)), m = µ(p).

which is an element ofLV P , since [σ1, σ2](m) ∈ Vm.
In what follows we further specialise to the case where the bundleP is justE. This is the

space where Lagrangian-type systems can be defined, as will be shown below. The main ob-
servation to make in this case is that we have a canonical map which allows a kind of splitting.

We recall that a splitting of the sequence 0→ V
i→Ã

j→R → 0 is simply a choice of a
point ofA. (Indeed, if we have a splittingh and we puth(1) = z thenj (z) = j (h(1)) = 1,
so thatz = i(a) for somea ∈ A.) Therefore, once we have fixed a pointa ∈ Awe have two
complementary projectors, a ‘horizontal’ one mappingz to j (z)i(a) and a ‘vertical’ one
ϑa : Ã → Ã given byϑa(z) = z−j (z)i(a). Notice that the image ofϑa is inV , so it can be
considered as a map form̃E toV . (Indeedj (ϑa(z)) = j (z−j (z)i(a)) = j (z)−j (z)·1 = 0,
so thatϑa(z) is in the image ofi.)

In the case of an affine bundle, we therefore have a mapϑa : Ẽm → Ẽm for every
a ∈ Em, and thus a mapϑ : τ ∗Ẽ → τ ∗Ẽ given by

ϑ(a, z) = (a, z− j (z)i(a)).

This map is called the canonical map. As mentioned above, we can consider it as a map
ϑ : τ ∗Ẽ → τ ∗V . In local coordinates, we have

ϑ = (eα − yαe0)⊗ eα.

An important concept for the study of dynamical systems on affine Lie algebroids is that of

admissible elements. An elementZ ∈ LẼE is said to beadmissibleif, roughly, it has the
same projection underτ1 andτ2. More precisely, we set

Adm(E) = {Z ∈ LẼE|τ2(Z) = i(τ1(Z))}.
An equivalent characterisation is the following:Z is admissible if and only if it belongs to
JEE andϑ vanishes on its projection toτ ∗Ẽ, which we will denote byτ12(Z) (cf. [16]),
hence

Adm(E) = {Z ∈ JEE|ϑ(τ12(Z)) = 0}.
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Indeed, ifZ is of the formZ = (z, Va), then the first condition means thatz is in the image
of i and the second then further specifies thatz = i(a).

By a contact 1-form we mean a 1-formθ onLẼE (i.e. aC∞(E)-linear map from sections
of τ1 toC∞(E)), which vanishes on sections whose image lies in Adm(E). It follows from
the characterisation of admissible elements that contact forms are locally spanned by

θα = Xα − yαX 0.

Any 1-form θ on Ẽ determines a contact 1-form̄θ by means of the canonical map

〈θ̄ , Z〉 = 〈θ, ϑ(τ12(Z))〉.
In coordinates, ifθ is of the formθ = θ0e

0 + θαe
α then

θ̄ = θα(X
α − yαX 0).

Notice that the elements of the basis{θα} of contact 1-forms are of this type:θα = eα. We
further will need the affine function̂θ ∈ C∞(E) associated toi∗(θ). To be precise, there is
of course a linear function oñE associated toθ , but we will reserve the notation̂θ for its
restriction toE, meaning that in coordinates:

θ̂ = θ0 + θαy
α.

With these definitions, we can split (the pullback of) a 1-formθ on Ẽ as follows:

τ ∗
2 θ = θ̂X 0 + θ̄ .

This decomposition is important for various calculations in the next section.

9. Complete and vertical lifts

The prolongation structure we have specialised to, withF = Ẽ andP = E, is visualised
in the following diagram.

Given a sectionζ of Ẽ we can define two sectionsζC andζV of LẼE which are called
the complete lift and vertical lift ofζ , respectively.
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The vertical lift is defined by the following sequence of natural constructions. Given a
pointa ∈ Em and a vectorv ∈ Vm, we define the vectorvV

a ∈ TaE by its action on functions
f ∈ C∞(E)

vV
a (f ) = d

dt
f (a + tv)

∣∣∣∣
t=0

.

Next, if z ∈ Ẽm anda ∈ Em, the vertical lift ofz to the pointa is defined as

zV
a = (ϑa(z))

V
a .

For the special case thatz = i(v), this is consistent with the preceding step:zV
a = vV

a . Let

nowξV : τ ∗Ẽ → LẼE be thevertical lift map, determined byξV(a, z) = (0τ(a), zV
a ). The

final step in the construction now is obvious: ifζ is a section ofẼ, we define the section
ζV of LVE, called the vertical lift ofζ , by putting

ζV(a) = ξV(a, ζ(m)) with a ∈ E andm = τ(a).

In coordinates, ifζ = ζ 0e0 + ζ αeα then

ζV = (ζ α − yαζ 0)Vα.

Much of the structure here discussed is encoded in the definition of a vertical endomorphism

S onLẼE (or sections of it), which goes as follows:S = ξV ◦ ϑ ◦ τ12. Explicitly, if Z =
(z, Va), thenS(z, Va) = ξV(ϑa(z)). In coordinates, the type (1, 1) tensor fieldS reads

S = (Xα − yαX 0)⊗ Vα.
The complete lift of a sectionζ of Ẽ is defined by the following two conditions which
completely characterise it:

• ζC projects toζ , i.e.τ2 ◦ ζC = ζ ◦ τ ,

• ζC preserves the set of contact forms, i.e. ifθ onLẼE is a contact form thendζCθ =
[iζC, d]θ is contact.

In the case of the pullback of a 1-form oñE, making use of the decomposition as sum of
a contact plus a non-contact formτ ∗

2 θ = θ̂X 0 + θ̄ , and taking into account thatζC projects
ontoζ and thatτ2 is a morphism of Lie algebroids, one can verify that

dζC θ̄ = dζ θ + θ̂dζ e0, dζC θ̂ = d̂ζ θ − θ̂ d̂ζ e0.

In fact, any of these two conditions is equivalent to the second condition in our definition
of complete lift.

The coordinate expression of the complete lift of the sectionζ = ζ 0e0 + ζ αeα is

ζC = ζ 0X0 + ζ αXα + [(ζ̇ α − yαζ̇ 0)+ Cαβ (ζ
β − yβζ 0)]Vα,

whereCαβ = Cα0β+Cαγβyγ , and for a functionf ∈ C∞(M), the complete liftḟ ∈ C∞(E) is

defined byḟ = d̂f. The first two terms ofζC are determined by the projectability condition,
whereas the third term can be obtained by applying the preceding formula toθ = eα.
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The vertical and complete lift satisfy the following properties

dζVf = 0, dζV θ̂ = iζC θ̄ , dζCf = dζ f, dζC θ̂ = d̂ζ θ − θ̂ d̂ζ e0

for f ∈ C∞(M) andθ a 1-form onẼ. We prove only the third; ifv = ϑa(ζ ) then

dζV θ̂ (a)= ζ(m)Va θ̂ = d

dt
θ̂ (a + tv)

∣∣∣∣
t=0

= d

dt
(θ̂ (a)+ t〈θm, v〉)

∣∣∣∣
t=0

= 〈θm, v〉 = 〈θm, ϑa(ζ )〉 = (iζC θ̄ )(a).

Also, it follows form the definition of the vertical endomorphism that

S(ζC) = ζV, S(ζV) = 0.

Using the above equations it is a matter of a routine calculation to prove the following
commutation relations:

[ζC
1 , ζ

C
2 ] = [ζ1, ζ2]C, [ζC

1 , ζ
V
2 ] = [ζ1, ζ2]V + 〈ζ1, e0〉ζV

2 ,

[ζV
1 , ζ

V
2 ] = 〈ζ1, e0〉ζV

2 − 〈ζ2, e0〉ζV
1 .

The above definitions and relations are greatly simplified if we restrict to sections of the
associated vector bundleV . Indeed, ifσ = σαeα is a section ofV , then the complete and
vertical lifts ofσ have the coordinate expressions

σC = σαXα + (σ̇ α + Cαβσ
β)Vα, σV = σαVα,

and the action of the complete lift over linear functions and contact forms is given by

dσC θ̄ = dσ θ, dζC θ̂ = d̂σ θ,

sincedσ e
0 = 0. Furthermore, the commutation relations are as in the usual vector Lie

algebroid case

[σC, ηC] = [σ , η]C, [σC, ηV] = [σ , η]V, [σV, ηV] = 0.

10. Lagrangian-type systems on an affine algebroid

In this section, we first consider dynamical systems onE, which geometrically are defined
in the way standard second-order differential equations on a tangent bundle or first-jet bundle
are conceived, but do not necessarily correspond, locally, to second-order equations. As in
[20] therefore, we will call them pseudo-SODEs. We shall subsequently discuss a class of
pseudo-SODEs, which come from a (constrained) variational problem and therefore are
said to be of Lagrangian type.

A curveγ : R → E is said to be admissible if

ρ ◦ γ = γ̇M,
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whereγM = τ ◦γ is the projected curve to the base. In coordinates, ifγ (t) = (xi(t), yα(t))

thenγ is admissible if

ẋi (t) = ρi0(x(t))+ ρiα(x(t))y
α(t).

A curve is admissible if and only if its prolongation takes values in the set of admissible
elements. Indeed, the prolongation of the curveγ is the curveγ c(t) = (i(γ (t)), γ̇ (t)),

and this is an admissible element if and only if it is inLẼE, i.e.ρ(γ (t)) = T τ(γ̇ )(t) =
γ̇M(t).

Definition 4. A pseudo-SODE onE is a sectionΓ of Adm(E), i.e. a section ofLẼE which
takes values in the set of admissible elements.

From this definition, it readily follows that〈Γ,X 0〉 = 1 and the integral curves ofρ̃1(Γ )

are admissible curves. Conversely, any sectionZ of LẼE such that the integral curves of
ρ̃1(Z) are admissible is a pseudo-SODE. From the alternative characterisation of Adm(E)

as the set of elements ofJEE which vanish underϑ , it follows that a sectionΓ of LẼE is
a pseudo-SODE if and only ifS(Γ ) = 0 and〈Γ,X 0〉 = 1.

Locally, a pseudo-SODEΓ is of the form

Γ = X0 + yαXα + FαVα

and the vector field̃ρ1(Γ ) is of the form

ρ̃1(Γ ) = (ρi0 + ρiαy
α)

∂

∂xi
+ Fα

∂

∂yα
.

Now, to define Lagrangian-type equations in a coordinate free way, we can (as in[16])
simply mimic the usual construction on a first-jet bundle. For a given functionL onE, we

define the Cartan 1-formΘL onLẼE by

ΘL = dL ◦ S + LX 0

and the Cartan 2-formΩL byΩL = −dΘL. We say that a pseudo-SODEΓ is of Lagrangian
type if

iΓ ΩL = 0.

If the Lagrangian is regular (the 2-formΩL has maximal rank at every point) then there
are no other solutions than multiples of a pseudo-SODE, but in the singular case this is a
condition to be imposed.

In coordinates, we get

ΘL = ∂L

∂yα
θα + LX 0

and the expression ofΩL is simplified by fixing an arbitrary pseudo-SODEΓ0 = X0 +
yαXα + Fα0 Vα and using the basis{X 0, θα, ψα = Vα − Fα0 X

0} dual to{Γ0,Xα,Vα},
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ΩL =
(
dΓ0

(
∂L

∂yα

)
− ∂L

∂yγ
Cγα − ρiα

∂L

∂xi

)
θα ∧ X 0 + ∂2L

∂yα∂yβ
θα ∧ ψβ

+ 1

2

(
ρiβ

∂2L

∂xi∂yα
− ρiα

∂2L

∂xi∂yβ
+ ∂L

∂yγ
C
γ
αβ

)
θα ∧ θβ.

Lagrangian-type pseudo-SODE equations are of the form

ẋi = ρi0 + ρiαy
α,

d

dt

(
∂L

∂yα

)
= ρiα

∂L

∂xi
+ Cγα

∂L

∂yγ
.

It is interesting to verify that such equations also can be obtained from a geometric calculus
of variations approach. We explain how this works without working out all the technical
details. Given a functionL ∈ C∞(E) and two pointsm0 andm1 onM, consider the problem
of determining the critical curves of the functional

J (γ ) =
∫
γ

L =
∫ t1

t0

L(γ (t))dt

defined on the set of admissible curvesγ : [t0, t1] → E, for whichγM in the base manifold
has fixed endpointsm0 andm1. This is a constrained problem, since the curves we consider
are restricted to be admissible, i.e. they have to satisfy the constraintsẋi = ρi0 + ρiαy

α. We
should therefore be more specific about the class of admissible variations we will allow;
they will be generated by complete lifts of sections ofV , as follows.

Let σ be a section ofV such thatσ (m0) = σ (m1) = 0. We consider the vector fields
X = ρ(σ ) andY = ρ1(σC), and we denote their flows byψs andΨs , respectively. It
follows thatψs(m0) = m0 andψs(m1) = m1. The family of curvesχ(s, t) = Ψs(γ (t)) is
a 1-parameter family of admissible variations ofγ : thatχ(s, t) projects ontoχM(s, t) =
ψs(γM(t)) is obvious; the fact thatχ(s, t) is an admissible curve for every fixeds requires
more work and is left to the reader. At the endpointst0 andt1, we have

χ(s, ti) = Ψs(γ (ti)) = ψs(mi) = mi.

The infinitesimal variation fields we consider are of the formZ = Y ◦ γ ; their projection
toM isW = X ◦ γM . Therefore, the variation ofL alongχ(s, t) at s = 0 is given by

∂(L ◦ χ)
∂s

(0, t) = Z(t)(L) = Y (L)(γ (t)) = ρ1(σC)(L)(γ (t)) = dσCL(γ (t)),

from which it follows that

d

ds
J (χs)

∣∣∣∣
s=0

=
∫
γ

dσCL.

If σ is a section satisfying the conditions given above, then so isf σ for every functionf
onM. Taking into account that(f σ )C = f σC + ḟ σV, we have that

0=
∫
γ

d(f σ )CL =
∫
γ

fdσCL+ ḟ dσVL

= f 〈dL, σV〉|γ (t1)γ (t0)
+
∫
γ

f {dσCL− dΓ 〈dL ◦ S, σC〉} =
∫
γ

fσC{dL − dΓ (dL ◦ S)},
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wherebyΓ is the pseudo-SODE of which the extremals we are looking for will be solutions,
and we have made use of the property that [σC, Γ ] is vertical, as one can easily verify in
coordinates.

Sincef is arbitrary, the fundamental lemma of the calculus of variations implies that its
coefficient must vanish along extremalsγ (t) and therefore also in an open neighbourhood
onE. So the vanishing of the variation ofJ is equivalent to

iσC(dL − dΓ (dL ◦ S)) = 0.

One easily verifies thatdΓ (dL◦S)−dL is ‘semi-basic’, and since it vanishes on the complete
lift of arbitrary sectionsσ of V , it follows thatdΓ (dL◦ S)− dL = λX 0. The value ofλ can
be found by contraction withΓ :

λ = 〈dΓ (dL ◦ S)−dL, Γ 〉 = iΓ dΓ (dL ◦ S)−dΓ L = dΓ iΓ (dL ◦ S)− dΓ L = −dΓ L.
Thus the Euler–Lagrange equations can be written asdΓ ΘL = dL, from which it follows,
sincediΓ ΘL = dL, thatiΓ ΩL = 0.

To finish, we also outline briefly the relation to a Hamilton-type formulation. For that

we consider the prolongation of the extended dual, i.e.LẼE†. In this bundle we have a
canonical 1-formθ (cf. [15] or [17]) given by

〈θ0, (z, Vϕ)〉 = 〈z, ϕ〉.
In a local basis{X 0,X α,P0,Pα} of LẼE† induced by a frame onE, the 1-formθ0 reads

θ0 = µ0X
0 + µαX

α.

The canonical symplectic formω0 is the 2-formω0 = −dθ0, which in coordinates has the
expression

ω0 = X 0 ∧ P0 + X α ∧ Pα + µγC
γ

0βX
0 ∧ X β + 1

2µγC
γ
αβX

α ∧ X β.

The Lagrangian defines a mapFL fromE toE†, the Legendre transformation, defined as
follows. The elementFL(a) ∈ E† is the affine approximation (first-order Taylor polyno-
mial) ofL ata. In other words, ifv is the vector such thatb = a + v andg is the function
g(t) = L(a + tv) then

FL(a)(b) = g(0)+ g′(0).

In coordinates

FL(x
i, yα) =

(
xi, L− ∂L

∂yα
yα,

∂L

∂yα

)
.

Then we have, as in the standard theory, that the Cartan forms are the pullback of the
canonical forms by the prolongation of the Legendre transformation:

(LFL)
∗θ0 = ΘL and (LFL)

∗ω0 = ΩL,

whereLFL : LẼE → LẼE† is the map

LFL(z, V ) = (z, TFL(V )).
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11. Final comments

The case we studied in[20] is whenM is fibred over the real lineπ : M → R and
the image of the anchor mapρ belongs toi(J 1M) ⊂ TM. As said before, the motiva-
tion to investigate this particular case comes from potentially interesting applications of
a time-dependent generalisation of the by now classical ‘Lagrangian systems’ on (vector)
Lie algebroids (cf.[21]). Needless to say, we should be able to recover this case simply
within the present more general set-up. Essentially, in the case of the extra fibration, we
have coordinates(t, xi), and we can think oft as being the zeroth coordinate. Then, we
haveρ0

0 = 1 andρ0
i = 0, so that

ρ(e0 + yαeα) = ∂

∂t
+ (ρi0 + ρiαy

α)
∂

∂xi
.

An interesting feature is that in this case we havee0 = dt, so thate0 is not only closed but
also exact. In fact, as argued inSection 6, this is the condition for a Lie algebroid structure
on an affine bundle to have a 1-jet-valued anchor. There are corresponding changes, e.g. in
the formula for the exterior derivative of a function and in the fundamental Poisson brackets
onE†. We refer to[20] for this.

For the sake of clarity, however, it is useful to point out a rather subtle difference between
the first and the present approach. In[20], we also discussed the notion of prolongation.
Compared to the diagram we have here, inSection 9, the difference is that the bottom line
wasE → M rather thanẼ → M and the prolonged bundle accordingly was an affine

bundle rather than the vector bundleLẼE → E we have here. In fact, for the purpose of
defining (geometrically) time-dependent systems of Lagrangian type, one can construct all
the necessary tools also on the affine prolongation of[20]. However, we wish to discuss
in a forthcoming paper aspects such as the non-linear and linear connections which are
naturally associated to a pseudo-SODE on an affine bundleE, and for that purpose, even
specifically for the time-dependent framework, it turns out to be much more appropriate to
use the prolongation structure of the diagram ofSection 9.
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